トンネル切羽のひずみ軟化挙動に関する数値解析的研究

構造及びコンクリート工学分野 王 熹

Abstract

本研究は、未固結の地盤材料に見られるひずみ軟化挙動特性を記述できる弾塑性構成則に基づき、 有限要素解析法により、既存のトンネル模型遠心載荷実験で模擬再現されたトンネル切羽の挙動とせ ん断域の進展についての評価を試みたものである。そのために、実験で用いられた地盤材料の一軸圧 縮と三軸非排水非圧密圧縮試験の結果に基づいて、構成則内の材料定数を検討・設定した。その上で、 二つの要素分割にて、実験で観察された切羽押出し量と地表面の沈下量の急増を数値的再現できたが、 せん断域の進展の把握には検討の余地を残した。

1.はじめに

近年、都市部トンネル工事において、価格と地上の 交通への影響を低減するために、山岳工法が採用され るケースが増えている¹⁾。ただし、山岳工法を応用す ると、未固結地盤(岩盤を除いた地盤)では、条件に よって、図1.1で示すようにトンネルの肩部からせん 断ひずみの大きな帯状領域が生じ、切羽が押し出され ながら、せん断域が地表面まで進展していき、陥没や 崩壊を生じさせる事例もある。しかし、従来の設計に 用いられる解析手法として、弾性または弾塑性(弾性 完全塑性または弾性硬化塑性)解析であり、そのため、 地盤材料モデルの材料軟化強度が表現できず、トンネ ルや切羽の安定とせん断域が評価できない。そこで、 これらの評価にはひずみ軟化を考慮した弾塑性解析 が必要と考える。

図 1.1 トンネルの掘削先端から地表面への崩壊例

D. sterpi²⁾ら、芥川³⁾らと中岡¹⁾らの研究成果で、 材料の強度低下を考慮することにより、図1.1に示す 崩壊域の形成が評価できることを示した。そこで、本 研究は、水野⁴⁾らが提案した LADE 型モデル(図 1.2 で ひずみ空間での載荷曲面を示す)を用いて、トンネル 切羽の安定性とせん断域の挙動の評価を試みるもので ある。

図 1.2 本研究で用いる LADE 型モデル(関連流動則)

そのために、遠心模型実験の地盤材料の一軸と三軸 非排水非圧密圧縮試験結果に基づいて、ひずみ空間で 定義した LADE 型モデルの構成則内の材料定数の設定 方法について検討・設定した。その上で、高橋⁵⁾らが 行った遠心載荷実験模型の有限要素解析を実施し、実 験で観察されたトンネル切羽と地表面の変位、せん断 域の形成の再現を試みた。最後に、LADE 型モデルの地 盤材料への応用における問題点について議論した.

2. 遠心模型実験概要

本研究の対象は高橋⁵⁾らが行なった地盤トンネル模型の遠心実験である。土槽の中に半縦断面トンネル地盤模型を作成する、その寸法と変位計測点は図2.1に示す。80Gの重力加速度において、被り土16m、直径8mの工事中のトンネル地盤の応力状態と挙動を再現

できる。地盤材料強度が軸ひずみ 1.6%の時ピーク応 力値 0.07MPa に達し、比較的に固結度の高い土砂地山 を表現できた。

図 2.2 地表面沈下と切羽の押し出し量 5)

実験結果について、遠心加速に伴う地表面沈下量と 切羽押し出し量の変化は図 2.2 に示す。遠心加速度が 20G に達すると変形が観測され始め、20G から 55G ま で、遠心加速度にほぼ比例して沈下が発生している。 55G から切羽が大きく崩壊していき、地盤内すべり面 が生じ、58G で地表面までに及ぶ大きな破壊変形が発 生した。載荷が 70G 以後に、切羽が崩壊した。

模型の前には透明なアクリル板を使用したため、載 荷中の地盤の変形を観察することができた。図 2.3 と 図 2.4 はそれぞれ載荷終了後の地盤内のすべり面と載 荷中の切羽近傍の地盤の変形を示す。

図 2.3 載荷終了後の地盤⁵⁾ 図 2.4 切羽近辺の変形⁵⁾ 3. ひずみ軟化解析手法

本研究で用いた LADE 型モデルとは、1977 年に Lade⁶⁾

が提案した構成則を基礎として、水野⁴⁾らによりひず み空間において定式化された、ひずみ軟化を考慮でき る構成則モデルである。応力空間とひずみ空間での載 荷関数をそれぞれ *f*,*F* とすると、次式が書ける。

$$df = \frac{\partial f}{\partial \sigma_{ij}} d\sigma_{ij}, dF = \frac{\partial F}{\partial \varepsilon_{ij}} d\varepsilon_{ij}$$
(3.1)

式3.1で示す応力空間での載荷関数の増分 df は図3.1 で示すように、応力空間で弾塑性挙動を表す際に、除 荷と載荷よる軟化は同じ式で判定する。ひずみ空間で は、弾塑性挙動を除荷、中立と載荷三つのひずみ状態 に分けるので、載荷関数の増分 dF にはその不具合を 除くことができるため、解析上は有利である。

図 3.1 応力空間とひずみ空間での 応力状態判定の相違

本研究で用いる載荷関数とポテンシャル関数を応 力空間で式 3.2 のように記述する。

$$f = (I_1 + a)^3 - \left(27 + f_p \left(\frac{p_a}{(I_1 + a)}\right)^m\right) \left(\frac{1}{27}(I_1 + a)^3 - \frac{1}{3}(I_1 + a)J_2 + J_3\right) = 0$$

$$g = (I_1 + a)^3 - \left(27 + \eta_2 \left(\frac{p_a}{(I_1 + a)}\right)^m\right) \left(\frac{1}{27}(I_1 + a)^3 - \frac{1}{3}(I_1 + a)J_2 + J_3\right) = 0$$

(3. 2)

ここで、式中のパラメータは以下のように、

- a:図1.2で示すように、降伏曲面が静水軸上で引張 方向への移動量を表す、常に正である。
- m:降伏曲面の曲率を表す。降伏曲面は、m>0の場
 合では鐘型に、m=0の場合では円錐型に、m<0の場合では開口を広がっていく形になる。
- *f_p*:硬化及び軟化パラメータであり、塑性仕事量の 関数であり材料強度を表す。初期状態は0で、応 力のピーク値に達するとき拘束圧の大きさに関 わらず一定値のηとなる。そして、軟化に伴っ て減少していく。

そして、応力不変量 I_1, J_2, J_3 を式 3.2 で示すひずみ不 変量 $\overline{I}_1, \overline{J}_2, \overline{J}_3$ による表示することで、ひずみ空間での載 荷関数とポテンシャル関数を式 3.4 のように記述でき

$$I_{I} = 3K \left(\varepsilon_{ii} - \varepsilon_{ii}^{p} \right) = 3K\overline{I}_{I} = \overline{A}\overline{I}_{I}$$

$$J_{2} = 2\mu^{2} \left(e_{ij} - e_{ij}^{p} \right) \left(e_{ij} - e_{ij}^{p} \right) = \overline{B}\overline{J}_{2}$$

$$J_{3} = \frac{8}{3}\mu^{3} \left(e_{ij} - e_{ij}^{p} \right) \left(e_{jk} - e_{jk}^{p} \right) \left(e_{ki} - e_{ki}^{p} \right) = \overline{C}\overline{J}_{3}$$
(3.3)

ここで、
$$K$$
、 μ 、 ε_{ii} 、 ε_{ij}^{p} 、 e_{ij} 、 e_{ij}^{p} は、それぞれ、

体積弾性係数 E/3(1-2v)、せん断弾性係数 E/2(1+v)、体 積ひずみ、塑性体積ひずみ、偏差ひずみ、塑性偏差ひ ずみを表す。

$$F = \left(\overline{A}\overline{I}_{1} + a\right)^{3} - \left(27 + f_{p}\left(\frac{p_{a}}{\left(\overline{A}\overline{I}_{1} + a\right)}\right)^{m}\right) \left(\frac{1}{27}\left(\overline{A}\overline{I}_{1} + a\right)^{3} - \frac{1}{3}\left(\overline{A}\overline{I}_{1} + a\right)\overline{B}\overline{J}_{2} + \overline{C}\overline{J}_{3}\right) = 0$$

$$G = \left(\overline{A}\overline{I}_{1} + a\right)^{3} - \left(27 + \eta_{2}\left(\frac{p_{a}}{\left(\overline{A}\overline{I}_{11} + a\right)}\right)^{m}\right) \left(\frac{1}{27}\left(\overline{A}\overline{I}_{1} + a\right)^{3} - \frac{1}{3}\left(\overline{A}\overline{I}_{1} + a\right)\overline{B}\overline{J}_{2} + \overline{C}\overline{J}_{3}\right) = 0$$

$$(3. 4)$$

本研究では、関連流動則を用い、G=Fにした。

本研究で用いる解析プログラムの解析流れは一般 的な材料非線形解析手法の流れと同等であり、図 3.3 で示す。ただし、ここでの特徴は、

- 作用は加速度増加による自重の増分
- ひずみ空間で、ひずみ量による塑性流動の判定
- 物体力増分や残差によるひずみ増分はまず初期弾 性剛性を用いて計算する

4.材料試験結果に基づく解析での材料定数の設定

本節では、式 3.2 の各材料定数の意味と設定手順を 説明する。本研究で用いた材料定数は、一軸と三軸非 排水非圧密(UU)圧縮試験結果に基づいて設定した。 第2節で紹介した遠心実験とほぼ同時期に一軸圧縮 試験を行った。半年後に補足試験として、遠心実験と 同じ時期に作製された土材料の三軸UU試験を行った。 そのため、三軸試験で得られた材料強度は一軸試験よ り低かった(表 4.1)。そのため、表 4.1に示すように 一軸試験結果に準じて、三軸試験結果を調整したもの を材料定数設定に利用した。調整した応力ひずみ関係 を図 4.1に示す。

表 4.1 材料試験結果と調整

供試体		実験結果		調整後	
		$\sigma_1 - \sigma_c \ (kN/m^2)^c$	ε (%)	$\sigma_1 - \sigma_c \ (kN/m^2)^c$	ε (%)
一軸材料試験		70.21	1.66	70. 21	1.66
三軸 Ⅲ 試験	拘束圧50kN/m ²	40.77	0.61	76.86	1.69
	拘束圧100kN/m ²	48.18	0.65	83. 51	1.71
	拘束圧200kN/m ²	60.99	0.70	96.81	1.77

$$f_{p} = \eta_{1} \left(\frac{e \cdot Pa}{W_{ppeak}}\right)^{\frac{1}{\gamma}} \times \exp\left(-\frac{W_{p}}{\gamma W_{ppeak}}\right) \times \left(\frac{W_{p}}{P_{a}}\right)^{\frac{1}{\gamma}}$$
$$W_{ppeak} = P\left(\frac{\sigma_{c}}{P_{a}}\right)^{l} P_{a} + W_{ppeak0}$$
$$(4.1)$$
$$\gamma = \gamma_{1}\sigma_{c} + \gamma_{2}$$

図 4.2 材料定数設定手順

材料定数は弾性係数 *E*=16.6MN/m² とポアソン比 *v* =0.3 の他に、LADE 型モデルの載荷関数を材料定数は

破壊曲面を表す材料定数 *a*、*m*、強度を表す η₁ 及び式 4.1で示すように強度定数 *f_p*と塑性仕事量 *W_p*を関連付 け材料定数である *W_{ppeak0}、 P、 l、 γ₁、 γ₂、*計 8 個の 材料定数がある。算定手順は図 4.2 で示す。 1) 定数 *a*、*m*、*η*₁

定数 a は図 1.2 で示すように、載荷曲面が静水圧軸 上の移動量を示す定数である。よって、 a は材料の強

図 4.3 各拘束圧でのピーク時のモール円

度に大きく寄与する定数となる。定数 a を求めるにあ たって、図 4.2 に示すように、まずはピーク時のモー ル円の接線とσ軸の交点の絶対値を a の値とする。よ って、図 4.3 から a は 532kN/m²となった。その値を用 いて他の定数を設定した後、一軸圧縮試験の一要素解 析による、a を再設定する。

ピーク時強度を表す定数 η_1 と載荷曲面の曲率を表 す定数mは式 3.2 の塑性ポテンシャル方程式 $g(\sigma_i,\eta_1)$ にaを代入し算定する。それで、定数mをパラメータ に、各試験結果で得られる η_1 の標準偏差が最小になる ように、 $m \ge \eta_1$ を設定する。標準偏差が 0.20 の時、mと η_1 はそれぞれ 1.08 と 7.10 となった。

2) 定数 W_{ppeak0}、 P、 l

圧縮実験から得られた応力ひずみ曲線から、塑性仕 事量を算出する。ここで、除荷後の応力ひずみ挙動を 弾性回復と仮定し、塑性仕事量は図 4.4 の影部の面積 とする。W_{ppeak}はピーク時の塑性仕事量であり、W_{ppeak0} は一軸圧縮試験での軸応力が強度に達する時の塑性 仕事量である、各試験結果から算出する(表 4.1 に示 す)。

式 4.1 で示すように、定数 W_{ppeak0} 、P、lを用いて、 拘束圧 σ_c での W_{ppeak} を計算することができる。そこで、 試験結果で得られた $(W_{ppeak} - W_{ppeak0})/P_a \ge \sigma_c/P_a$ の関係

を図 4.5 に示すように両対数グラフで表し、最小二乗 法を用いて線形補関すると、P、lはそれぞれ 0.007785 と 0.7605 となった。 W_{ppeak0} 、P、lが大きくなると、 解析においてピーク時のひずみが大きくなる。 3)定数 γ_1 、 γ_2

式 4.1 による、関数 f_p のパラメータの内、主に軟化 域の傾きを支配するパラメータ γ がある。 γ は定数 γ_1 、 γ_2 より拘束圧 σ_c と線形関係を示す。

まずは試験で得られた応力ひずみ曲線に基づいて、 設定した定数*a*と*m*を式 3.2 の載荷関数 $f(\sigma_i, f_p)$ に代 入し、 f_p (実測)を算出する。次に、定数 η_1 、 W_{ppeak0} 、 *P*、*l*を式 4.1 に代入し、curve-fitting による各拘束 圧での f_p (計算)値が f_p (実測)に合わせるように γ を 設定する。図 4.6 で curve-fitting の結果を示す。

得られた各拘束圧の γ の値を図 4.7 で示す。ただし、 拘束圧 200kN/m²の場合は、軟化があまり見られなかっ たので、 γ の値がかなり大きくなったため、外すこと にした。それで、 γ_1 、 γ_2 はそれぞれ 0.130m²/MN、0.453 となった。

4) 定数 a の 再設 定

ここまで設定した材料定数を用いて、定数 a をパラ メータに、1 要素解析を行う。解析で得られた強度を 試験結果に合わせるように(図 4.8 で示す)、定数 a を 設定した。定数 a は 0.178MN/m²との結果になった。

5. 遠心模型実験の数値解析

本節では、まず遠心実験模型の有限要素解析モデル について述べる。第4節で設定した材料定数を用いて、 遠心模型実験の解析を行い、得られた結果について考 察を加える。

1)有限要素モデルの設定

本研究では、第2節に紹介した模型に基づく二つの 有限要素解析モデルを用いて解析を行った。図5.1と 図5.2はそれぞれモデル1とモデル2での要素分割を 示す。

図 5.1 モデル1 での要素分割

図 5.1 モデル 2 での要素分割¹⁾

二つのモデルの共通点は、

- 拘束条件:底面と側面の面外変形を拘束する。
- トンネル覆工部を剛体として扱う。モデル1では、
 完全弾性モデルのトラス要素で不静定フレーム構

造より剛体を構成した。トラス要素のヤング率は地 盤材料の100倍の1600MN/m²で、断面積は100mm²で ある。モデル2はソリト要素で剛体を構成する、材 料の初期剛性は地盤材料の約300倍である。

- トンネルの切羽の近傍及びせん断域が形成する地 盤部において、要素寸法を小さくした。
- 載荷条件は遠心力より自重の増加。密度 1.658g/mm³ の土は 80G における重量は 1.229MN/m³となった。覆 工部の重量を 0 とする。
 一方、両者の相違点は、
- モデル1の要素数はモデル2の1/8程度のため、計算時間はかなり短縮できる。
- モデル1では、8 点の Guass 積分を用るため、計算 精度は1積分点を用いるモデル2より高い。
- モデル2は中岡ら¹⁾による検証されているため、妥当性は保証できる。

2) 遠心載荷実験の解析結果

前述のモデルを用いて、解析を行った。実験の計測 点に対応する、図 5.1 に示す遠心加速度の増加に伴う 切羽天端地表面沈下量と切羽押出し量を図 5.4 と 5.5 で示す。

図 5.4 モデル1の解析結果

まず、モデル1の解析結果では、地表面沈下量と切 羽の押出し量の変化について35Gまでほぼ一定の勾配 で増加する。35Gから50Gにかけての残差の収束速度 が遅くなったため、地盤が局所的に軟化し始めると考 えられる。そのため、35Gから50Gの解析結果におい て変位の増分が大きくなった。50G以後の変位は小さ くなり、実験のように大きく増加しなかった。その原 因として、材料モデルの軟化が緩やかで、保有強度が 高く軟化域の拡大も収まったと考えられる。

次に、モデル2の解析では、許容残差を減らし解析 を進めた。図5.5で示す地表面沈下量と切羽の押し出 し量から見ると、最終ステップの80Gにおいて、実験 の結果を再現できている。地表面沈下量の変化におい て、60Gまでほぼ一定の勾配で増大し、60Gから75G の間に、沈下量の増加率が少し大きくなり、75G以後 急増した。切羽の押出し量において、実験とほぼ同じ 40Gの時点において軟化域が生じ、変位が大きくなっ た。そして、解析における切羽は実験と同じ、載荷が 70G後崩壊した。

図 5.5 モデル2の解析結果

二つの解析結果から、解析モデルを比較すると、

- モデル1はモデル2より収束性がよい。モデル1では、弾性段階または軟化域が安定した以後に収束したまで所要繰り返す計算数が少ない;モデル2では、1積分点で解析したものの、収束性がわるい。
- モデル1はモデル2より、材料のひずみ応力関係を うまく再現していると考えられる。

よって、解析は要素の特性に大きく依存すると考え られる。

80Gにおいて、モデル2のせん断ひずみ分布を図5.6 に示す。せん断域がトンネル切羽の近辺に留まり、図 1.1のように地表面まで進展しなかったため、せん断 域の形成と進展に検討の余地が残っている。

図 5.0 セル阿い 9 み方1

6.まとめ

- 本文では、ひずみ空間で定義する LADE 型ひずみ軟化 モデルを示し、応力空間で定義する際に軟化と除荷 の判定式の不具合を消去できることを明らかにした。
- 本研究で使われる LADE 型塑性モデルの定数は、一軸 及び三軸 UU 圧縮試験結果による求めることができ た。

- 遠心実験の解析は、破壊前の地表面沈下量と切羽の 押し出し量変化を再現できた。また軟化による変形 が急増する挙動が再現できた。
- せん断域は切羽の近辺まで留まり、地表面への進展 は再現できなかった。
- 本解析は、不安定材料を取り扱っているため、要素の特徴や数などモデルの構成に大きく依存し不安定である。

参考文献

- 中岡 健一、畑 浩二、芥川 真三、トンネル工
 学論文集 Vol. 19、土木学会、pp. 51-58、2009
- 2) D.Sterpi and A.Cividini, Rock Mechanics and Rock Engineering, pp.277-298, 2004
- 芥川 真一、松本 憲典、長居 寛之、トンネル 工学研究論文・報告集 土木学会、Vol.10、pp.113 -118、2000
- 4) 水野 英二、畑中 重光、コンクリート工学論文 集、日本コンクリート工学協会、Vol.2、No.2、 pp. 85-94、1991
- 5) 高橋 真一、杉江 茂彦、大林組技術研究所報 No. 69 2005
- Poul V. Lade, Solids and Structures, Vol 13, pp. 1019-1035, 1997

大島昭彦 助教授

遠心載荷実験では、遠心力 80G において、被り土は 16m に達するので、地盤は圧密されているではないか。

回答:この解析の目的は遠心実験の結果を再現するこ とである。地盤の一軸圧縮強度と比べると、被り土の 自重のほうが大きくて、遠心力増加で自重よりの沈下 も生じ圧密されていると考えられる。今度の解析では、 全地盤を均一材料と見なして、現実にある地盤と大き く異なるとも考えられる。

東田淳 教授

時間が経つと地盤材料の材料強度や特性が変わってい るのにも関らず、材料定数設定に用いる三軸 UU 試験結 果は半年後の地盤材料の試験結果である。解析と実験 は違うことやっているか。

回答:説明に誤りがあった。実は、同じ配合と材齢の 地盤材料の三軸実験を行ったが、強度が大きく異なっ た。そして追加した CU そして UU 試験の結果に軟化が 見られなかったため、三軸 UU 試験の結果を調整し材料 定数の同定に用いることにした。

山口隆司 教授

今後はどの様に適用を考えてよいか。遠心模型実験の 解析において、地盤材料の構成則モデルより要素分割 のほうが結果に大きい影響を及ぼすか。 回答:適用するには要素を細かく分割する場合、解析 に生じた不具合を除くことをまず果たせなければなら ない、そして切羽とせん断域の要素分割を細かくすれ ば、よい結果がでると考えられる。地盤材料の構成則 モデルを正しく定義するのは、解析の正確性の基礎と なる。ただし、要素分割は、局所に要素が軟化した後、 軟化はどの方向に向かって進展していくという問題に 大きく関る。