三角形と六角形網目からなる高ライズ二層立体ラチス構造物の 力学的特性と地震応答性状に関する研究

1.序

近年、数ある大空間構造の中でも特筆すべきものに ドーム建築が挙げられる。その形状は比較的扁平なもの が多いが、設計により自由な構造形態が求められつつあ る中で、モントリオール万博のエキスポドームやイギリ ス・コーンウォール州のエデン・プロジェクト等、ライ ズの高いドームも数多く建設されている。

本論はこのような、特に高ライズなドーム状構造物、 及び比較のためのシリンダー状構造物に対して、軽快に 無柱の大空間を形成することができる三角形と六角形網 目からなる二層立体ラチス構造を適用した場合を想定 し、数値解析を通じてその力学的特性や地震応答性状を 明らかにすることを目的としている。まず、これら高ラ イズ二層立体ラチスシリンダー及びドームを対象に弾性 座屈解析、自由振動解析を行ない、構造物が有する弾性 座屈性状、振動性状といった力学的特性を把握する。次 に、時刻歴線形地震応答解析によってこれらの地震応答 性状を把握すると共に、応答スペクトル法の適用性の検 討や、通常の高層建築に採用されている地震層せん断力 係数分布の比較・検討により¹⁾、高ライズ二層立体ラチ ス構造物の設計手法や耐震性の評価を行なう。

2. 解析モデル

本論で取り扱う解析モデルは、三角形と六角形網目からなる半開角90度の二層立体ラチスシリンダー、ドームとし、共に上層が三角形網目(Triangle Meshes)、下層が六角形網目(Hexagon Meshes)からなるT-H型、上層が六角形網目、下層が三角形網目からなるH-T型の二

建築構造学分野 幸田 昌之

種類とする。表1に解析モデル寸法を、図1に解析モデ ル形状と寸法、及び本論通じて共通の境界条件を示す。 境界条件は、シリンダーは桁方向境界節点の、ドームは 周上節点のそれぞれX、Y、Z方向変位を拘束したピン 支持とする。モデル名称は、形状、網目、境界条件をパ ラメータとし、括弧内が網目を、左下添字はcがシリン ダー、dがドームを表し、右下添字はtが上層支持、bが 下層支持を表す。

表1 解析モデルの寸法											
モデル	上層スパン (m)	下層スパン (m)	ライズ (m)	デプス (m)	表面積 (m ²)						
シリンダー	シリンダー 60.0		30.0	1.5	4809.8						
ドーム	60.0	57.0	30.0	1.5	5654.9						

モデルに使用する部材は、雪荷重を考慮した許容応力度 設計によって、上弦、下弦、ウェブ材ごとに決定する。応 力解析時にモデルに作用させる荷重は、ラチスの部材重 量及び屋根面の仕上げ材などを考慮した全載荷重とし、 支持節点を除く上層の全節点に、鉛直下向きの等分布荷 重(2.46kN/m²)とする。表2に、使用部材と断面諸元及び モデル重量を示す。

立77 十十	断面	寸法(r	nm)	断面積	断面2次モー	立7:11	断面	寸法(r	nm) 関	所面積	断面2次モー
四中4日	外	Ւ形×肉厚		$(c m^2)$	メント(cm^4)	内小引	外	形×肉	厚	$(c m^2)$	$\mathscr{I} \mathrel{\succ} \mathrel{\vdash} (\mathrm{cm}^4)$
Α	A 114.3×3.2		2	11.17	172.47	Н	- 19	90.7×5.	0 2	29.17	1258.19
В	11	14.3×5.	6	19.12	283.20	Ι	190.7×6.0		0 3	34.82	1486.18
С	13	39.8×3.	6	15.40	357.44	J	- 19	0.7×7.	0 4	0.40	1706.54
D	13	39.8×4.	5	19.13	438.17	Κ	21	216.3×6.0		39.64	2193.22
Е	13	39.8×5.	6	23.61	532.43	L	216.3×8.0		0 5	52.35	2843.60
F	16	55.2×5.	0	25.16	808.05	М	267.4×8.0		0 6	55.19	5488.74
G	- 19	90.7×4.	5	26.32	1141.47						
+	· アンク	「係数(kN/cı	m ²)	2.06×10^4	せん	/断弾	i性係数	友(kN/	cm ²)	7.92×10 ³
モラ	ゴル	上弦	下弦	ち ウェフ	ブ 重量(tf)	モラ	ゴル	上弦	下弦	ウェフ	″ 重量(tf)
t(H-	·T) _c	F	K	E	26.42	t(H-	T) _d	Ι	Е	Е	22.44
b(H-	·T) _c	Ι	Μ	C	31.49	b(H-	T) _d	Α	F	D	17.85
t(T-	·H) _c	Κ	J	G	29.98	t(T-	·H) _d	F	С	В	18.33
- (T-	·H)	I	T	н	36.11	ь (Т-	$(H)_{d}$	F	Ĭ	F	23.01

表2 使用部材と断面諸元及びモデル重量

3. 高ライズニ層立体ラチス構造物の力学的特性

3.1 弾性座屈性状

上述の解析モデルに対して弾性座屈解析を行ない、静 的荷重作用時の挙動を把握する。解析時の作用荷重は、 支持節点を除く上層の全節点に、鉛直下向きの等分布載 荷とする。部材のせん断変形、反り変形は無視し、接合 部はすべて剛節点とする。表3に、各モデルの弾性座屈 荷重、及び座屈荷重を座屈時の最大変位節点における変 位で除した割線剛性を示す。また、図2にオイラー軸力 比分布図を示す。ここにオイラー軸力比とは、部材両端 をピン支持とした時の各部材の軸力のオイラー座屈軸力 に対する比である。さらに各モデルのオイラー軸力比最 大値を、表3に併せて示す。オイラー軸力比はどのモデ ルも三角形面で最大となり、中でもウェブ材が応力を効 果的に負担し、三角形面に生じる圧縮力を低減したモデ ル、(H-T)。には座屈耐力の上昇が認められた。また ドームでは、六角形面支持のモデルにおける座屈荷重 が、三角形面支持モデルの座屈荷重を大きく上回った。

表3 座屈荷重・割線剛性とオイラー軸力比最大値

図2 オイラー軸力比分布(H-T網目)

3.2 固有振動性状

本節では、高ライズ二層立体ラチス構造物固有の振動 性状を把握するため、非減衰自由振動解析を行ない、固 有周期や有効質量2)等を算出する。ここに有効質量とは 式(3.1)で表される、全質量のうちそれぞれのモードに関 与する質量を表す一義的な確定量であり、これが卓越し ているモードにおける振動性状と大きく関係する。有効 質量の全モード次数に渡る総和は,系の総和に等しい。

 $\boldsymbol{M}_{i} = {}_{i} \beta \left\{ {}_{j} \right\}^{\mathsf{T}} [\boldsymbol{M}] \left\{ {}_{j} \right\}_{i} \beta \left(kg \cdot s^{2}/cm \right) \quad (3.1)$,β:i次の刺激係数、{ ,}:i次の固有ベクトル、[M]:質量マトリクス 境界条件、接合条件とも前節までと同じとし、固有べ クトル等を算出する際の出力モード数は300モードとす る。解析結果として、表4~表7に、H-Tモデルに関 する1~5次のモード及びX、Y、Z各方向の有効質量 比が上位5位までのモードにおける固有周期と有効質量 比、及び各方向別に全300モードの有効質量比合計値を 示す。なお、各方向順位の網掛け部分は各方向別の有効 質量比上位3位までを表す。ドームはどのモデルも水平 両方向の有効質量比の大半が1次と2次で卓越するため、 X、Y方向の相関が高く、水平地震動に対する水平方向 の応答が大きいことが予想される。鉛直方向に関して は、やや高次なモードに鉛直方向1位が現れる上層支持 に比べて、下層支持では水平方向が卓越する1、2次直後 の3次モードで鉛直方向1位の有効質量比が現れる。こ

のことから、支持条件の違いが有効質量比の散らばり方 に影響を及ぼしていると考えられる。

各方向順位

1

4

1

3

4 4

比:b(H-T)d X Y Z

表	表4 固有周期と有効質量比: _t (H-T) _c								表5 固有周期と有効質量比:b(H-T)。						
モー	[×] 固有周期	有効	質量比	(%)	各力	,向	順位	モート	、 固有周期	有効	質量比	(%)	各大	,向川	頂
次数	4 4 9 9	X方向	Y方向	Z方向	X	Y	Z	次数		X方向	Y方向	Z方向	X	Y	
1	1.123	75.48	0.05	0.00	1		<u> </u>		1.124	79.79	0.01	0.00	1		
	0.414	0.00	6.22	0.07		3	_	2	0.481	0.00	12.79	0.01		1	
3	0.378	0.00	0.02	7.60			3	3	0.389	0.00	0.00	18.09			
4	0.243	0.09	0.04	0.00				4	0.282	0.00	0.01	0.00			
5	0.211	4.87	0.12	0.01	2			5	0.227	3.06	0.08	0.02	3		
10	0.152	0.48	12.71	0.04		2		6	0.218	3.39	0.00	0.03	2		
11	0.151	0.25	29.16	0.07		1		14	0.155	1.82	1.18	0.21	5		
15	0.130	0.01	5.67	0.89		5		19	0.138	0.06	5.91	0.04		5	
23	0.114	0.00	3.84	3.79			5	31	0.124	0.00	7.15	0.00		4	
24	0.112	0.01	6.19	0.04		4		34	0.114	0.00	0.01	11.13			
36	0.078	0.98	0.00	0.31	4			37	0.103	0.00	11.10	0.00		2	
37	0.076	0.19	0.06	7.50			4	41	0.088	0.00	8.33	0.00		3	
38	0.073	0.00	0.04	12.29			2	42	0.082	1.83	0.00	0.00	4		Γ
39	0.072	0.01	0.00	26.84			1	45	0.073	0.00	0.00	7.10			
54	0.056	0.87	0.00	0.01	5			48	0.066	0.00	0.00	14.65			
67	0.046	1.07	0.11	0.00	3			68	0.049	0.00	0.00	13.69			
有效	質量比計	93.75	93.51	93.07			·	有効	質量比計	97.65	92.37	93.93			
表	表6 固有周期と有効質量比: _t (H					· T)) _d	表	7 固有盾	期と有効質量比: _b (H-T)),	
モー	* 固有周期	有効	質量比	(%)	%) 各方向順(モード固有周期		有効質量比(%)			各方向順		
次数		X方向	Y方向	Z方向	Х	Y	Ζ	次数		X方向	Y方向	Z方向	Х	Y	
_1	0.132	45.02	31.44	0.01	1	2		1	0.137	59.31	15.59	0.00	1	2	
	0.131	30.21	43.64	0.01	2	1		2	0.137	14.76	57.71	0.03	2	1	
3	0.094	0.00	0.00	22.51			3	3	0.102	0.00	0.00	32.68			
4	0.083	0.01	0.01	0.09		_		4	0.083	0.05	0.00	0.00			
	0.083	0.00	0.00	0.00				5	0.083	0.01	0.04	0.02			
	0.077	0.16	1.29	0.18		5	<u> </u>	8	0.077	0.01	0.00	4.21			
-10	0.076	1.23	0.05	0.00	4		_	21	0.062	0.00	0.00	5.63			
	0.068	0.00	0.00	1.57			5	37	0.049	0.00	0.00	16.30			
	0.062	0.04	0.08	22.96			2	46	0.044	0.05	1.21	0.18		5	
22	0.058	0.00	0.06	25.47	2	_	1	47	0.044	1.25	0.02	0.29	4		
	0.045	1.30	0.18	0.00	3	0	_	49	0.039	1.87	0.51	0.00	3		
44	0.040	0.71	3.52	0.00		3	<u> </u>	50	0.039	0.16	2.42	0.00		3	
45	0.039	0.05	1.80	0.00	-	4	⊢	59	0.036	0.09	1.36	0.01		4	Γ
49	0.039	1.20	0.00	0.00	5	_	-	85	0.030	0.00	0.00	4.26			
63	0.033	0.00	0.00	8.89			4	117	0.024	1.19	0.05	0.00	5		F
有效	順重比計	95.09	95.03	89.36				有效	質量比計	87.68	87.75	89.83			-
										000	0	07.00			

4.高ライズ二層立体ラチス構造物の地震応答性状 4.1 時刻歷線形地震応答解析

本節で行なう時刻歴線形地震応答解析は、教育用構造 解析ソフト SPACE (SPace Frame Analysis package for Civil Engineers, reserchers and students)³⁾を用いて行な う。時刻歴応答解析法は Newmark の β 法とし、β =1/4 (平均加速度法)とする。減衰はレーリー型で、3.2節に おいて水平方向の有効質量が高かった上位2つのモード に対する減衰定数をともに2%としている。入力地震波 は1995年兵庫県南部地震の神戸海洋気象台データのEW 成分(Amax=617gal)、NS成分(Amax=817gal)、UD成分 (Amax=332gal)とし、このデータの28秒から43秒の15 秒間の地震波をそれぞれX、Y、Z方向に入力する。解 析の時間刻みは0.002秒とするが、このデータの測定時 間間隔が0.02秒であるため、各地震加速度記録を線形補 間したものを地動加速度として入力する。図3、図4に、 絶対加速度応答時刻歴(H-T網目上層支持の場合)を、 表8に各モデルの最大絶対加速度応答と生起時刻を示す。 シリンダーは、高ライズでなおかつY方向境界部がピン 支持であるため、X、Z方向の剛性がY方向に比べて極 端に低いことが応答の増大に影響し、どのモデルもX、 Z方向の応答が極めて大きい。またH-T網目は支持に よる応答の差が激しく、注意を要する結果といえる。 ドームは全体的に応答値は小さいが、全方向とも下層支 持の応答が上層支持の応答を上回る。最大応答生起時刻 については、シリンダーは全方向とも、六角形網目を支 持したモデルの方が早い時刻で最大応答を示している。 一方ドームは、水平、鉛直方向が最大応答を示した時刻 の差がはっきりしており、_b(H-T)_d以外は地震波入力 後4~5秒で先にZ方向が、その約3~4秒後に水平方 向が最大応答を示すという特徴が見られる。

図3 加速度応答時刻歴:t(H-T)。 図4 加速度応答時刻歴:t(H-T)d 表8 最大加速度応答と生起時刻

	X	方向	YZ	方向	Z 方向						
モデル	加速度(gal) 生起時刻(s) 力		加速度(gal)	生起時刻(s)	加速度(gal) 生起時刻						
$_{t}(H-T)_{c}$	3706.1	5.73	1602.5	5.80	3338.8	5.50					
_b (H-T) _c	4276.8	8.88	1980.9	6.34	5597.4	7.54					
$_{t}(T-H)_{c}$	3554.9	8.06	1655.9	7.42	4425.1	9.02					
$_{b}(T-H)_{c}$	3348.1	7.10	1658.2	6.37	4688.3	6.18					
$_{t}(H-T)_{d}$	1083.2	7.85	1059.8	8.56	1221.7	4.16					
_b (H-T) _d	1134.2	5.46	1549.7	5.54	1329.6	9.13					
$_{t}(T-H)_{d}$	1102.1	8.86	1284.3	7.91	1143.9	4.60					
_b (T-H) _d	1344.3	8.87	1554.7	5.57	1383.9	4.73					

4.2 設計手法の検討と耐震性の評価

4.2.1 応答スペクトル法の適用性

建物の耐震設計においては、実用的には応答の最大値 だけが問題になることが多く⁴、応答スペクトルを用い て各次応答成分を重ね合わせ、最大応答を略算する手法 として、SRSS法はよく用いられる。本節では、SRSS法 の考え方を元に各固有振動数の相関を組み込むことに よって、モードの相関が高い場合、つまり各モードの振 動数が接近しておりかつそれらのモードの有効質量が卓 越している場合に良い近似を与えるとされている CQC 法(Complete Quadratic Combination)を用いて応答スペ クトル解析を行ない、その応答と4.1節の時刻歴応答と を比較することによって、高ライズ二層立体ラチス構造 物への応答スペクトル法の適用性を検討する。

入力地震波には4.1節と同様、兵庫県南部地震の神戸 海洋気象台データを用い、地震波のEW、NS、UD成分 の変位応答スペクトルを0.0008秒ごとに算出し、それぞ れX、Y、Z方向に入力する。減衰定数は2%とする。

解析結果として、表9、表10に各モデルの両応答解析 による最大変位応答、最大軸応力の比較を、図5、図6に 変位応答の散布図(H-T網目上層支持の場合)を示す。 表の応答スペクトル解析欄括弧内の数値は、時刻歴応答 に対する応答スペクトル解析による応答の比率を表す。

表9 両応答解析による最大変位応答の比較

	時刻歷変伯	立応答(cm)		応答スペ	シクトル角	·解析による変位応答(cm)				
モデル	X方向	Y方向	Z方向	X方向 Y方向		ブ向	Z方向			
t(H-T)c	37.36	4.15	18.66	37.22	(1.00)	3.76	(0.91)	18.99	(1.01)	
b(H-T)c	45.93	9.79	27.80	40.68	(0.89)	8.33	(0.85)	22.57	(0.81)	
t(T-H)c	35.49	5.48	20.98	35.11	(0.99)	4.47	(0.82)	18.47	(0.88)	
b(T-H)c	40.01	8.33	25.60	36.62	(0.92)	7.43	(0.89)	23.05	(0.90)	
t(H-T)d	0.50	0.53	0.28	0.56	(1.12)	0.58	(1.09)	0.31	(1.08)	
b(H-T)d	0.69	1.04	0.42	0.60	(0.87)	0.77	(0.75)	0.39	(0.93)	
t(T-H)d	0.53	0.52	0.32	0.58	(1.08)	0.61	(1.18)	0.35	(1.09)	
b(T-H)d	0.69	1.00	0.46	0.79	(1.14)	1.06	(1.06)	0.53	(1.15)	

上記の結果より、応答スペクトル解析による変位・軸応 力等の応答は、シリンダー、ドームともに比較的良い精 度で時刻歴応答に近い値を示した。また応答スペクトル 法の適用性という点からは、シリンダーモデルの大半で 時刻歴応答を下回る危険側の結果を得たが、変位応答が 時刻歴応答を下回ったb(H-T)dを除くドームモデルで は非常に高い適用性が認められた。変位、軸応力の比較 に加えて、変位量が大きい節点位置の比較も考慮し、高 ライズ二層立体ラチス構造物への応答スペクトル法の適 用性をまとめると表11のようになる。

4.2.2 水平地震動に対する検討

本節では、耐震性の評価として特に水平地震動に対す る検討を行なうため、4.1節、時刻歴線形地震応答解析 の結果から、ビル等の多層建物の設計に採用されている 地震層せん断力係数分布を算出し、その特色や設計時の 留意点等の検討、及び従来の算定式から算出した多層建 物の分布との比較を行なう。層せん断力係数CiはX、Y 方向別々に求める。図7のように、Ciはi層より上部の 質点の加速度aiに質量miを乗じ、それらを合計したもの をi層より上部の重量wiで除した値とする(式(4.1))。ま た用いる加速度は、先の時刻歴応答での最大値とする。

図7 層せん断力係数の算定(図はt(H-T)dのX方向の場合)

図8に地震層せん断力係数分布を、表12に各モデルの ベースシア係数を示す。図中の点線は式(4.2)から得られ る通常の多層建物の分布である。通常の多層建物の層せ ん断力係数の高さ方向分布係数Aiは、i層より上の建物 重量比a;と建物の1次固有周期Tを用いて式(4.2)のよう に与えられている。

C _i の高	さ方向分	分布係数	发 $A_i =$	$1 + \left(\frac{1}{\sqrt{a_i}}\right)$	$-\boldsymbol{a}_i$	$\frac{2T}{1+3T}$	(4.2)			
表12 ベースシア係数										
		X方向	Y方向		X方向	Y方向				
	t(H-T)c	1.13	1.20	t(H-T)d	0.86	0.94				
	_b (H-T) _c	1.52	1.09	b(H-T)d	0.94	1.37				
	t(T-H)c	1.29	1.22	t(T-H)d	0.89	0.96				
	$_{h}(T-H)_{c}$	1 32	1 17	$_{h}(T-H)_{d}$	0.95	1 29				

シリンダーX方向の層せん断力係数分布は建物重量比a_i の影響を受け、中~上層部ではベースシア係数CBを下 回る特異な分布となった。ドームは低層付近が正に膨ら むような分布でせん断力の増加が大きいが、中~高層に かけては多層建物と同様の逆三角形分布であるため、低 層部の設計には十分な注意が必要であるといえる。水平

変位

節点位置

X Y Z

本研究では、高ライズ二層立体ラチス構造物の弾性座 屈性状や振動性状といった力学的特性及び地震応答性状 を把握した上で、応答スペクトル法の適用性や地震層せ ん断力係数分布の検討を通じて、この構造物の設計手法 や耐震性を評価してきた。得られた結論を以下に示す。 1. 応答スペクトル解析による応答はシリンダー、ドーム とも時刻歴応答に近い良い精度の結果を得たが、特に多 くの検討項目で時刻歴応答を上回ったドームに、応答ス ペクトル法の高い適用性が認められた。

2. 水平地震動に対する検討から、上層部重量の大きいシ リンダーのX方向に、中~上層部がベースシア係数を下 回る特異なCi分布がみられた。またドームは低層部で正 に膨らむCi分布となる点で設計に注意を要すると考えら れ、特にY方向の下層支持でその傾向が顕著であった。 <参考文献>

1)加藤史郎、向山洋一「高ライズラチスドームの地震層せん断力係数 に関する研究」日本建築学会構造系論文集第466号 pp87-95 1994.10 2)大崎順彦「建築振動理論」彰国社 1996 3) SPACE開発プロジェクトチーム 構造解析ソフト [SPACEver.2.2]

4)柴田明徳「最新 耐震構造解析」森北出版 2002

表13	水平地震動に対	付する検言
2010		1 / Q I/ H

11生				双13 小干地辰	動に刈りる限的				
		エデル	建物重量比。	C _i 分布の特	5色・留意点	通常の多層の	建物との比較		
布図	軸応力	-1770	建物里里比 a i	X方向	Y方向	X方向	Y方向		
Y Z ×		$_{t}(H-T)_{c}$		全体的に Ci 分布 のばらつきない。		高さ方向に均一 な重量分布とな	通常の多層建物に		
× ×	×	_b (H-T) _c	低層部から中層部ま での重量が均一に小」		多層建物に近い逆 三角形分布、最上	る多層建物に比べ上層部重量が	非常に似た分布示		
× ×		t(T-H) _c	さく、高層部の重量 比が比較的大きい。	高 僧 部 の 7 割 程 度 で あ	層部のC _i はC _B の 1.2~1.3倍程度と	大きいため、形状 そのものに Ci を	ん断力も比較的低く加えられてい		
×		_b (T-H) _c		ବ <u>ି</u>	小さい。	減衰させる効果 る。 が見られる。			
		$_{t}(H-T)_{d}$	通常の多層建物に近	多層建物のよう な逆三角形分布、	どのモデルも低層	巨視的には通常 の多層建物と変	X方向と同様低層		
0.96~1.04△ i解析で一致す 98~1.02△ .96~1.04△		_b (H-T) _d	がやや大きい。	低層部で C _i 増加 大で注意要する。	部でCiの増加大き く注意必要。上層	わらない分布示 すが、低層部で正	部で正に膨らむ分 布となるが、支持		
		t(T-H)d	各層の重量が均一で	低層部でC _i 増加 後、中~高層にか	支持に比べ下層支 持のCi増加が顕著	に膨らむ分布と なる点が異なり、	条件により違う分 布を示す点で注意		
		_b (T-H) _d	通用の多層建物に近 い。	けてほぼ一定に 推移する。	である。	設計時に留意す べき点である。	が必要である。		

表11 応答スペクトル法の適用性

最大変位

X Y Z

モデル

t(11 1) _c		^						^		
_b (H-T) _c	×	×	×					×	×	×
$_{t}(T-H)_{c}$		×	×					×		
$_{b}(T-H)_{c}$	×	×	×					×		
$_{t}(H-T)_{d}$				×						
$_{b}(H-T)_{d}$	×	×	×				×	×		
$_{t}(T-H)_{d}$				×	×					
_b (T-H) _d				×						
・最大変位:対時刻歴応答比、1.05以上○、0.96~1.04△										
・節点位置	:変	立量	上位	5位。	の節	点位	置が	両解	析で	一致す

ろ数 3つ以上○ 2つ∧ ・散布図:近似直線の傾き、1.03以上〇、0.9

・軸応力:対時刻歴応答比、1.05以上〇、0.